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ABSMUCT

The research reported in this thesis is devoted to the develop-

ment -f network synthesis techniques which are exact and applicable to

distributed RC functions. Complex variable transformations are introduced

which greatly simplify the representation and use of the hyperbolic com-

plex frequency functions of distributed RC structures. Realizability

conditions are given for the existence of distributed RC driving point

and transfer functions, and the actual synthesis techniques are described

in detail. Ecamples of the methods introduced herein are verified by

experimental data.
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CHAPTR ONE

AN INTRODUCTION TO DISTRIBUTED RC NETWORKS

1.0 Introduction

Common objectives in the use of microminiature network techniques

are to increase system reliability, to lower cost, and to reduce overall

network size by orders of magnitude. An attractive possibility for achiev-

ing these aims is the use of distributed circuitry, i.e., electrical net-

works made of three or more homogeneous layers. To date, mathematical and

physical complexity have restricted the distributed network designer to

simple RC distributed networks, hereafter referred to as RC networks.

Such circuits do not require interconnecting leads, as do lumped elements,

thus decreasing size and greatly increasing operational reliability.

Network deposition on a masked substrate can be accomplished by several

physical and chemical techniques.
1'2 '9

1.1 Sumnary of Previous Research

Although a large body of papersl3,7 1 4 have discussed the TC

network problem, comparatively few significant results applicable to the

synthesis of such networks with prescribed characteristics have been ob-

tained. Present design procedures require the designer to consider a

large number of previously analyzed R circuits,1'2'3 and match the

desired characteristic with those available. Often, the problem in com-

mercial microelectronics is solved with small discrete elements, and a

concurrent loss of packing density and reliability.
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As more information becomes available concerning BC :: lines, these

elements have greater appeal for practical microelectronics. The charac-

teristics of an RC line, an incremental section of which is sK2-iown in

Fig. 1-1, have not been determined for arbitrary density func-tions r(x)

and c(x). The differential equation for the RC line voltage e nd current

have been solved4 ,5,6,7, 2 1 for special cases. The simplest ce=mse occurs

when r and c are independent of distance x, i.e., the uniform TE (L96)

line of Fig. 1-2. If r(x) is proportional to ekx and c(x) is inversely

proportional to e k x , i.e., the exponential RC (ERC) line of FEig. 1-3,

another class of solutions9 has been derived. From both clas es the Z

parameters of a length L of RC line may be obtained.

Truncation techniques to approximate a finite pole-z ro pattern

by a distributed network with an infinite number of poles and zeros have

been applied in special cases. 9 '12 "15 These methods are fruit1lfu. where

dominant poles exist near the jco axis, and poles far removed f-= rom the

axis may be neglected. Potential analogs may be used to adjus-t the pole-

zero locations for the desired responses along the jw axis. -f no domi-

nant poles exist, such cut-and-try techniques are tedious, anLUW of limited

application.

Computers have been used to find frequency characteri _stics for

particular BC configurations, such as URtC and EC notch filter -s of Fig. 1-4.

Computer solutions are necessary, since these networks involve - complicated

hyperbolic transfer functions. 8 ' 9 Control of the notch frequez: ncy by a

single element, independent of the BC network, has been sugges- ted by
1

Castro. The network structure and design curves have been gi--ven by

Wyndrum.1



CONDUCTIVE LAYER

DIELECTRIC LAYER

RESISTIVE LAYER

I r(x)dx 1-dl
op -

c(x)dx-

E E-dE

(a) (b)

INCREMENTAL MODEL OF (a)

FIG. I-I

RC LINE WITH ARBITRARY GEOMETRY

RESISTIVE LAYER
DIELECTRIC LAYER
CONDUCTIVE LAYER

O_

PHYSICAL STRUCTURE SYMBOLIC REPRESENTATION

FIG. 1-2

UNIFORM RC LINE



CONDUCTIVE LAYER

PHYSICAL STRUCTURE SYMBOLIC REPRESENTATION

FIG / -3

EXPONENTIAL RC LINE

(a) (b)
URC FILTER ERC FILTER

VI

(c)
TYPICAL GAIN FUNCTION

FiG. 1-4

NOTCH FILTERS



1.2 Mathematical Model of the RC Segment

An incremental model of the RC line is depicted in Fig. 1-1.

The differential equations for E and I, assuming signal transmission in

the x direction only, arise from

dE = r(x) I (1)
dx

dl-= = sc(x) E. . 3

Cumbination of (1) and (2) yields

E" - (r'/r) E' - scrE = 0 (3)

I" - (c'/c) I' - scrI = 0 (4)

where the prime indicates differentiation with respect to x. When (3)

and (4) are solved for a finite line length, with prescribed terminal

conditions as done in Appendix II for the UC line, the two-port HO

segment Z-parameters may be found.

Since the incremental WC line voltages and currents are in

general functions of x, y and time, they must be solved for as a two

dimensional field problem. The partial differential equations, subject

to the proper boundary conditions, are derived in Appendix II. Boundary

conditions suitable to a rectangular geometry with uniform cross section

are then applied and the potential and current density functions are

found. The thickness of the dielectric is assumed to be very small, as

discussed in Appendix II.
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If r(x) and c(x) have constant value, Ro and Co, respectively,

the solutions of (3) and (4) are exponential functions of x. These solu-

tions exist when the line is of uniform cross section. For this case,

RD coth /ROWL2 (~Z11 -= Z22 --= ct (5)

and

Z12 = Z21= 0o csch 'sRoCOLA (6)

1.3 Proposed 1E Synthesis Technique

The research reported in this dissertation develops HO synthesis

techniques which are exact, analytic, and suitable for wide-band design.

Conformal, positive-real transformations permit hyperbolic HC network

functions to be expressed as ratios of polynomials of finite order. The

method employed herein derives its strength from the large body of reali-

zation techniques available for lumped networks. In particular, a lumped

LC synthesis method is also shown to be an R method. Carried over to the

RC embodiment, certain LC techniques are found preferable to others. The

general procedure involves a transformation from the s-plane to the S

plane, illustrated in Fig. 1-5.

1.4 Summary of Accomplishments

Chapter Two is devoted to the mathematical characterization of

the uniform R- (uIN) segment which is the building block for later syn-

thesis techniques. The hyperbolic frequency functions associated with

U0 networks are investigated, and a transformation is introduced which
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simplifies the representation of such functions. This transformation is

the basis for the synthesis techniques in the remainder of this disser-

tation.

Additionally in Chapter Two, a four layer RCR network is sug-

gested, and mathematically characterized. The URCR network is shown to

possess frequency characteristics which are related to those of the URC

network by a single transformation.

Chapter Three discusses the analytical representation of RC

network functions in the original complex frequency plane of definition

(the s plane). These representations occur as ratios of polynomials

which are rational in e / , with the foreknowledge that under the trans-

formation to the S plane (see Fig. 1-5), namely

ea/- = 1 + S
1-S

the resulting expressions are rational in S. The hyperbolic functional

description is motivated by the knowledge that uniform BC networks are

exactly characterized by hyperbolic network functions with an infinity of

poles and zeros.

In Chapter Four, the material of Chapters Two and Three are

employed to derive realizability conditions on BC driving point immittances

in terms of the exponential polynomials. Methods are described to attain

any realizable BC driving point irittance as a practical, one-piece cas-

cade of segments of C line; the characteristics of each segment are pre-

scribed by the synthesis technique using Richard's Theorem.
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Chapter Five extends the techniques of Chapter Four to transfer

function synthesis. Since cascaded RC structures inherently possess all

of their transmission zeros at infinity, a modification of the cascade

structure is introduced to achieve finite transmission zeros. Stubs are

employed at prescribed intervals along the in-line cascade. Realizability

conditions outline the classes of functions achieved by this technique in

terms of the exponential polynomials interpreted in Chapter Three.

Chapter Six considers the problems of building practical RC

networks by the methods described in earlier chapters. The design of a

low pass filter with prescribed cutoff characteristics illustrates the

proper use of the exponential polynomials to approximate a given plot of

gain versus frequency.

Chapter Seven stmarizes the conclusions resulting from this re-

search.
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CHAPTER~ TWO

THE MATNATICAL CHARACTERIZATION OF RC FUNCTIONS

2.0 Introduction

In this chapter the two-port parameters of the several distrib-

uted network segments to be employed in future chapters are derived. Upon

completion of the representation of 0C networks, a conformal transforma-

tion is suggested. By definition of a new complex frequency variable,

S = tanh (a/s/2), the network functions assume a simpler, non-transcendental

form, noted in Corollaries II and III.

In Section 2.3, a similar treatment is given to a new class of

distributed networks, the URCR segments. A second transformation, in

addition to the one above, permits straightforward characterization of the

URCR parameters by non-hyperbolic expressions.

The most desirable physical realization employing URCO two-ports

is the cascade configuration (Fig. 2-1(a)). This configuration is pref-

erable for available microelectronic fabrication techniques, since it

minimizes the number of fabrication steps, and eliminates most elemental

interconnections which otherwise would be required. A general RC synthesis

technique which always results in a cascade embodiment is achieved in

Chapter Four.

Other possible connections are illustrated in Fig. 2-1. All

possess at least one of the following serious disadvantages, compared to

the cascade structure:
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1) The use of but one port of each elemental two-port,

2) The possibility of ungrounded one-port multilayered structures,

3) A large number of (possibly unreliable) interconnections,

4) Excessive network area.

2.1 tUC Segments

Prior to the synthesis of cascaded RC networks, it is necessary

to investigate the individual segments and the classes of driving point

immittances which may be synthesized with them, and outline the fundamental

mathematical ideas used in the developnent. Later, when RC i ,ittances

realized with cascaded sections are developed, the cascade realizability

conditions are found to be identical with those developed in Theorems IV,

V and VI.

The network of Fig. 2-2(c), with the output open circuited, has

the Impedance matrix,

RO coth L s&RC o  RO csch L sC O

ZVSOIs-R-OCo (1)

R0 csch L 'sROC0  Ro coth L AsROCo

If the network is terminated in an arbitrary ZL, as in Fig. 2-2(a), its

driving point impedance is

(Ro coth L/ ( + Ro coth L/s )0 ( IRO 2

Z i n =(
Q t, + Ro coth 41sl )

ZL /Sj;Zro(2)
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Ro and Co are constant impedance density functions in ohms per unit length

and farads per unit length respectively. If ZL a 0, the URO output port

is short circuited and effectively a URCS one port is left for which

(Fig. 2-2(b))

S - o tanh I/ o (3)ZinsS Y11 f -socO

If ZL = co, an RCO one-port is obtained which is characterized by

Zino = Z11 = R
0 coth L 'BR;Co (4)

0 !_ROCo

Note at this point that an LC impedance in the ,/i plane is ob-

tained from an BC impedance in the s plane by multiplying the RC impedance

by /s. The resulting impedance, considered in the ./i plane, represents

that of a uniform LC network. Mathematically,

Theorem I. If ZRC(s) is the driving point (DP) impedance of an RC network,

,LC(s) = I ZRC(s) is the driving point impedance of a reactive

network in the rs plane.

Coro I. If YRC(s) is the EP admittance of an RC network,

= 1 YRC(s) is the driving point admittanceof an LC network

in the rs plane.

Thus (3) and (4) become respectively

Zins(ro) = / -s P 0tanh L/ = o tanh (s (5a)V~Co
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Zin (/) s Ro coth L /0107- -oct r q ) (b

These are recognized as driving point impedances of Ed lines in the re

plane.

2.2 The S - a Transformations: Applications to C Functions

Consider the positive real mapping*

csinh: I e/a 1 + d
S(V- 2) = . (6)

cosh -- sinh WS

c and d real, 0> c > d.

This transformation is the sum of two transformations which may

form the basis for the reduction of distributed system functions to lumped

system functions. For d = 0 and c = 1, (6) reduces to

S2(/i) =tanh (&/s/2) -- e
, " 1(7)

evs + 1

and for d = c = 1, (6) reduces to

S2 (/S - coth (a,/"/2) = SVr + 1 (8)
e5%/ - I

*F(s) is a positive real mapping of s if with a = a + Jw
a) F(s) is analytic for a > 0.
b) F(a) is real.
c) a > 0 maps into Re F(s) > 0.

See pages 357 ff. of reference 22.
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It is sufficient to consider either of the two transformations.

Si(rs) will be examined here. Recalling that (5) represents lossless

(LO) functions, with an infinite array of poles and zeros alternating on

the jo axis in the ./T plane, positive real transformations (7) and (8)

must again result in LC functions, in the S3 plane. In fact, (7) and (8)

possess the ability to transform distributed impedances (5) into lumped

impedances. Using (7),

= S, (9)Z i n s ( VI-s ) =J =1 r
0

and

4RO 1
z () (10)

Eqs. (9) and (10) reveal the power of the synthesis procedure described

in Fig. (1-5). The elegance of this technique is that the mathematics

of the synthesis procedure is executed in the (lumped LC) S plane, after

the s - S transformation, and employs only finite polynomials, as opposed

to the infinite polynomials which characterize the URC functions. Fig. 2-3

presents transformations (7) and (8), which are clearly positive real.

A correlation is thus obtained between lumped L's and C's in the

Si plane and URCS and URC0 networks in the s plane. Certainly this is

not a one-to-one transformation, as evidenced by the multiple strip equi-

valency of the /5 plane to the S plane. In fact, precisely the absence

of the one-to-one property allows a distributed network with its infinite

constellation of poles and zeros, to be transformed conformally into a

lumped equivalent. 1 6 It is clear from Fig. 2-3 that any point in the
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S plane has an infinity of images in the /i plane. The correlation for

(7) and (8) is given by Theorems II and III:

Theorem II.* If ZM(s) is the driving point impedance of a 19 network

composed of segments with RC product equal to (a/2)2 , ZLc(S 2.)

s Z-(s) is a lumped LC driving point Impedance with

S], = tanh (ar/2).

Corollary II. If transformation (7) is employed, each

a) C in the lumped LC network in the S3. plane may be realized

as a URCO network in the s plane.

b) L in the lumped LC network in the S 1 plane may be realized

as a UROS network in the a plane.

Theorem III.* If Zf-(s) is the driving point impedance in the s plane of

a URC network composed of segments with RC product = (a/2) 2 ,

ZLC(S 2 ) = j ZRC(s), with S2 = coth (s/i2), is a lumped LC

driving point impedance in the S2 plane.

Coro III. If the transformation (8) is employed, each

a) C in the LC network in the S2 plane may be realized as a

UCS network in the s plane.

b) L in the LC network in the Sa plane may be realized as a

URCO network in the s plane.

The philosophy of the distributed synthesis procedure is sug-

gested by the preceding development. An original analytical specification

*For proof, see Appendix.
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of the driving point immittance function to be realized by a LUC network

is stated. The function must be tested, as will be described by Theorem

VI, to determine its potential to be realized by a UR network. If Z(s)

is a suitable candidate, it is transformed into a lumped LC function by

S3 Mt 2~ a-s---ears---1 (a)2 e /s +1

ea . (1 + S ) (b)
(1 - Si)

or

S2 = coth a'- = ea/ + 1 (a)
2 e -1i

(12)

ea/s = (1- S 2 ) (b)
(1 + S2 )

Proceeding from Z(S), the problem is now reduced to finding a suitable

LC network to realize Z(S). Each L and C may be replaced by UROCS and URCO

one-ports, and the desired RC network may be constructed. Although ladder

interconnections of L's and C's would solve the mathematical problem, the

corresponding BC embodiment would be a clumsy interconnection of URCS and

URCO one-ports illustrated in Fig. 2-1(b). An improved technique employ-

ing cascaded URCO two-ports is described in Section 4.4.

Since the two-port properties of URCO networks are to be exploited,

the URCO transmission term Z12 (Eq. (1)), is recalled to be:

Z21(8) = Z12(0) - (lO
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Under (7) this becomes

z 2 1 (S) = ZJ2(s) - ' V (i4)vs

More must be said in Chapter Five concerning the factor . At this

time note (Fig. 2-3) that S = ± 1 corresponds to s = oo. Thus all of the

transmission zeros of the URCO two-port lie at infinity, physically aris-

ing from the shunt capacitance of the model presented in Fig. 2-1. This

may cause serious limitations in the realization of RC transmission prop-

erties, and suggests the use of RCR networks, described in the next section.

2.3 URCR Networks

As indicated in Section 2.2, it is not possible to achieve finite

zeros of transmission with in-line RC structures. Consequently, another

structure designed to assure negative real transmission zeros is suggested.

This RCR network, illustrated in Fig. 2-4, consists of a dielectric layer

interposed between a conducting strip and a resistive layer. The impedance

matrix for the network is given by

coth nL 1

RA RAn sinh nL

z(p) = (15)

i coth nL

RAn sinh nL A n

where n = PRAC /RAG k
l+p C/GB l4T C/GB

k - ; p' =p C/GB
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Nov if a new conplex variable, s, is defined by s = p'/(l+p'), S is

clearly a positive real function of p', and maps the right half of the

p' plane into the right half of the s plane, as in Fig. 2-5.

The first important conclusion is that the entire negative real

axis in the s plane has as its image the finite segment of the negative

real p' axis from the origin to -1. Thus a function with a denumerably

infinite set of negative real zeros in the s plane possesses an uncount-

ably infinite number of zeros on the segment -1 < p' < 0 in the p' plane.

In this case, -1 would be a limit point.*

Consider the Z parameters for the RACRB network:

z11 (p') = z2(p,) = RA coth UL (16)
kIJl+pp

z2(p,) = z2(p,) = RA 1 (17)

k - sinh kLi49pt  l*p '

Letting s p'/(14p'), Z(s) must represent a realizable (and -) network.

Indeed,

z11 (s) = AA coth kL 11 (18)
k/Ai

Z12(s) RA -- (19)
k/i sinh U /i

*Gross and Braga (see reference 25) refer to such a limit point as a
finite accumulation point.
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cparing Eq. (18) and (19) with the ITC Z-parameters of Eq. (1),

a remarkable coincidence is noted. Under the frequency transformation

s = p'/(l+'p), the RCR two port has an impedance matrix identical with

the original URCO network, all of whose transmission zeros are at in-

finity! The poles and zeros of zA for the original network alternated

and were denumerably infinite. In light of the foregoing discussion of

this transformation, the poles and zeros of z 1 (p') must be in the finite

plane with a limit point at -1. In fact, by the Mittag-Leffler Theorem, 3 3

zii(p') may be expressed as

RA(P'+l) 00 M 2+

M )1 M4 [(kL)2 + (M])2 -]

p' + - (+ A

+ (M*) 2 n (20)

p +M) 2

(kJ) 2 + (Mn) 2

The poles and zeros of this expression are depicted in Fig. 2-6. RCR

networks, significantly, allow the synthesis of a wider class of driving

point impedances than was possible with URCO networks alone. It is

further noted that, unlike its URCO counterpart, the UROR network has a

finite driving point admittance at infinite frequency, due to GB.

The transfer impedance of the RACRB network, likewise, has its

U0 counterpart. zla(p') may be expanded into

00
_(')= RA 1 RA(P'+l) 11 (p'+l) 1 W)

2L,00sinh kLk no14'k 2 p p' +'
M-4l 14 (.kL/Mn)

(21)



IC 3~ pc z 25

S PLANE

Jul1

LIMIT POINT

p IPLANE

FIG. 2-6

ODR ZERO

-I-

p' PLANE

F1 G.2-7
RCR IMPEDANCE POLE ZERO PLOTS



26

The RCR network transfer impedance involves an infinite number of zeros

at -1 in the p' plane, or at -l/RBC in the p plane, and an uncountably

infinite sequence of poles between p' = 0 and p' = -1 on the negative real

p' axis. Fig. 2-7 presents the configuration. Along the j.1' axis, the

effect may be approximated by the pole at the origin, the next M poles,

and a zero of order M+l at p' = -1.

R R network functions such as (18) and (19), expressed as func-

tions of s under the mapping of Fig. 2-5, may now be operated on by trans-

formation (11). The resultant network functions are then expressed as

ratios of finite-order polynomials in S. Proceeding from Z(S), the dis-

tributed synthesis problem is again reduced to finding the proper LC

network to realize Z(S).

2.4 Concluding Remarks

The characterization of distributed RC network functions has

led to hyperbolic functions of frequency which would be rather difficult

to work with in an orderly synthesis technique. Under the proper trans-

formations, it has been shown that these functions may be materially re-

duced in complexity, and put into such a form that lumped LC synthesis

techniques may be adapted to the RC problem.
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CHAPTS1 THREE

THE APROXDATION PROHM

3.0 Introduction

URC immittance and gain functions were shown in Chapter Two to

be given by hyperbolic functions of the argument, rs-r. For the wide band

synthesis problem, it is unfeasible to approximate the hyperbolic functions

by either truncated infinite product expansions such as by the use of the

Mittag-Leffler Theorem, 3 3 or by truncated infinite series. Nonetheless,

such expansions do provide valuable insight into the real frequency behav-

ior of R network functions, since the infinite product or series expan-

sions of any of the two-port parameters of finite URC networks involve

only integral powers of s.

An example of a typical RC driving point impedance, expressed in

infinite product and infinite series forms, was seen to be

Z(S) - tan AsR sin R_A _R M cosh '0M(O)

which may be written as 3 3

00
sRC

AS~ _R 1 (1 + )
z(s) k=1 (2)

00 sRC

or 3/2 (sRc)/2

N 11C+ 3RC + 5/2.R)
z(s) = 5! + (3)

C (sRC)
2

SRC 1 +__. + 4 +
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From the infinite product expansion, the driving point function is seen

to possess an infinite number of alternating and countable negative real

poles and zeros. This is characteristic of URC networks.

3.1 Importance of Approximation in the s Plane

As was noted in Fig. 1-5 of Chapter One, the WC synthesis tech-

nique of interest herein is based on conformal transformations which map

the s plane into the S plane. It will be recalled that the actual syn-

thesis will be undertaken in the S plane, where the distributed RC func-

tions of s are characterized by ratios of finite polynomials in S. Driving

point and transfer function realizability conditions are most readily de-

rived in the S plane. Suppose, however, the network designer begins with

a graphical impedance-magnitude function plotted against O (i.e., s = j(),

and applies the conformal s - S transformation to achieve a graphical

magnitude characteristic in the S plane. The first analytical approxima-

tion of the function will be in the S plane. It would then be inconvenient

to formulate an analytic impedance expression or analytical realizability

conditions on the function in the original s plane.

It is thus important to begin with a graphical representation

of the desired network behavior, and within the framework of a set of

realizability conditions, translate the graphical specifications directly

into hyperbolic functions of /i. The synthesis procedure from this point

on becomes direct and mathematically exact. Because URC networks are not

characterized by ratios of finite polynomials in a, it is profitless to

approximate a graphical specification by such a ratio.
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Consider now the general form of hyperbolic approximation for a

given magnitude-frequency specification as detailed in Eq. (4). At this

time, since no particular classes of functions (i.e., driving point,

transfer or gain) have been discussed, a general network function will be

formulated. It will be shown in Chapters Four and Five that realizable

C driving point and transfer immittance functions are subclasses of this

general network function. The general function that is of considerable

interest in approximating a specified graphical function of frequency is

given by

c (.1 * e') (e'418 + Bi'/ + 1

H(s)= F(s) 1 e%")(l +

z 4eX + Cie' " + (2-Ci) e2 V/ + Cie" 1)
1

M. +Aiev + 1) (e'" + De3Vf" + (2-Di) e r + Die + 1)
1" 1

(4)

where Ai, Bi, Ci, and Di are real;

I1i < 2, IAil < 2, oo > Ci > 1, c x> D > 1,

p is a positive integer,

and F(s) - 1, H(s) - a gain function

/, H(s) - an impedance function

- H(s) = an admittance function
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The "exponential polynomial" factors in Eq. (4) are shown in

Chapters Four and Five to be sufficient to characterize URO impedance

and gain functions. It will be necessary to understand the magnitude

characteristics of the exponential polynomials thoroughly; hence they

are introduced here. Presently, it will be shown that practical "straight-

line" magnitude approximations exist for each of the polynomial factors

described in Eq. (4). Accordingly, a procedure analogous to the straight-

line "Bode Approximation" for lmped networks is developed. Hponential

polynomials provide the vehicle for approximatirg graphical specifications

of real frequency directly by analytic expressions in the original plane

of definition.

3.2 Graphical Magnitude Characteristics

Figures 3-1 through 3-7 present the real frequency magnitudes

of the exponential factors of interest. The abscissas represent the log

10 of the normalized frequency -2 , which will be most useful in the

general synthesis problem. Since the several immittance and gain functions

to be realized involve products and quotients of such exponential poly-

nomial factors, the logaritbms of the factors need only be added together

graphically to produce a desired M specification.

Figure 3-1 is a plot of exponential polynomials of the form

1

•2 ar' + B•e /  + 1

for various vames of Bi, with s - jo. A disadvantage of this plot is

large db falloff encountered at high frequency. Practically this may
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result in error by the network designer taking the small difference of two

large numbers to achieve a desired characteristic. Such difficulty may

be circumvented by use of the exponential polynomial ratios of Fig. 3-3.

Note that the expressions in Fig. 3-3 reach asymptotic values for zero

and infinite frequencies. The curves are computed for /Y63 = (J+l)-V-72.

Figure 3-2 represents the magnitude of other terms found in the

general network expression. Figs. 3-4, 5, 6 and 7 present the magnitude

of the polynomial factors above, with the complex variable 's' replaced

by p'/(lp'), for p' = ja. Such plots are necessary in the synthesis of

RCR networks, discussed in Chapter Four.

3.3 Examle of Approximation Technique

Let the high pass characteristic of Fig. 3-8 be required within

3 db. for all normalized frequencies > 0.1, subject to the following

conditions:

1) The function A(e a /8) used to approximate the graphical character-

istic must be identically zero for zero frequency, and asymptotically

approach a constant as the frequency approaches infinity.

2) Below -- = .1, the magnitude of A must be at least 30 db.

below its reference level at high frequencies.

It is to be noted at this point that since no realizability con-

ditions for a particular physical embodiment of A(es / ) have been con-

sidered, A(ea/T) will be constructed without regard to such conditions.

In Chapters Four and Five, such restrictions will be introduced, and

will detail the choice of exponential polynomials available to construct

the magnitude function of interest.
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Since JAI is required to be identically zero at dc, a term of

the form (ee / s - 1) is placed in the numerator. This term may have its

magnitude cancelled out at high frequency by a denominator term of the

form (esre + 1), noted in Fig. 3-2. The term (eSa/ - 1) also helps meet

the 30 db./decade requirement. From Fig. 3-2, and the specifications on

JAI, a graphical characteristic may be rapidly plotted which will deter-

mine the require contribution of the other (as yet unknown) exponential

polynomial factors to IAI. When this is done, an upward break frequency

of about ,02 = 0.15 is clearly needed, requiring a second order polynomial2
with B1 about -1.8. For a finite overall gain at high frequency, trial

and error quickly shows that a denominator polynomial with Al equal to

zero will permit all of the specifications to be met. The final mathe-

matical expression is

A(s) = ( e ' s - 1)(e2 u /' - 1.8e'l/ + 1) (5)
(ee/s + 1)(e2&Vs_ + 1)

The prescribed and approximating graphical characteristics are compared

in Fig. 3-8.

3.4 Graphical Magnitude Specifications Derived From Phase Specifications

Appropriate relationships between magnitude and phase character-

istics of minimum phase shift networks were first introduced by Bode.31

Phase tables 32 may assist in the systematic computation of the phase

function from a given magnitude function. In this dissertation, the con-

verse problem is of interest. The C synthesis procedure, limited to



42

minimum phase networks, begins with an analytic characterization of the

magnitude characteristic. From the phase specification, it is necessary

first to find the magnitude function.

letting A(o) represent the magnitude function, and e(w) represent

the phase function,

00

A- A = 1 d(aoA) log coth du (a)
Mk J du

-a,

(6)

00
~ F d(e/1) log coth ~-- u (h)

-a,

where

u = log (/%) (7)

The reference levels Aco and Ao at w = o and co = o respectively

are used because the magnitude functions so derived are not unique. For

minimum phase networks with specified magnitude functions, the associated

phase is uniquely specified. However, since an arbitrary magnitude com-

ponent such as a constant loss may be added without affecting the phase

characteristic, (6(a)) and (6(b)) indicate that A(m) may be determined

only within an arbitrary constant.

Although (6(a)) and (6(b)) represent a considerable amount of

evaluation effort, the weighting function log coth ju/21 (see Fig. 3-9)

simplifies the calculation. Outside of the vicinity of u - 0 (or o = mc),

log coth ju/21 falls off rapidly. Most of the contribution to the In-

tegrand at oc comes from the slope of 1 or aR in the immediate vicinity
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of c. Evaluation of (6(a)) or (6(b)) at a sufficient number of values

of a will allow the graphical determination of A(o). The graphical mag-

nitude characteristic is the departure point for the RC synthesis. Con-

ditions relating degree of approximation in the magnitude function and

the phase function have not been derived. Thomas has stated that a ± j db.

gain approximation results in 30 phase accuracy. 3 2 Examples of calcula-

tions of (6(a)) and (6(b)) have been carried out by Bode in Sections 14.8-9

of reference 31.

Bode (Section 13.10, reference 31) considers the extension of

the above formulae to systems other than lumped networks. The particular

restriction on the application of these integrals is the one which limits

the behavior of Z(s) - (where Z(Jcn) = A(Jco) JB(Jan)) at infinity. Z(s)

may increase at most logarithmically, so that Z(s)/s vanishes for infinite

frequency. Difficulty arises when an exact expression for Z(s) is not at

hand, particularly since distributed functions often include essential

singularities. Each distributed network function should be tested to

ascertain that it meets the conditions that it have no right-half-plane

or imaginary axis singularities, and that it approach infinity no faster

than log s. The driving point impedances of URCO and URCS one-port net-

works given in Eq. (3) and (4) of Chapter 2 satisfy these conditions, as

well as the networks which are realizable by Theorem IV. As Bode has

pointed out in connection with the application of these integrals to the

distributed functions, "It is evidently unwise to dogmatize about so

general and vague a problem."
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3.5 Concluding Remarks

The material in this chapter provides the foundation for speci-

fying analytical RC immittance functions from which networks with pre-

scribed magnitude characteristics may be constructed. In Chapters Four

and Five, realizability conditions will be derived which require the

exact expression of distributed network functions in terms of hyperbolic

functions of si. Such magnitude characteristics as will be required in

Chapters Four and Five have been plotted in this chapter in db. vs. logio (z,

and permit the approximation of prescribed magnitude plots by products of

exponential polynomials.
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CHAPTER FOUR

THE SYNTHESIS OF RC MIVING POINT flITANCE

4.0 Introduction and Objectives

From the viewpoint of mathematical development, it is desirable

first to formulate a synthesis technique which realizes driving point

immittance functions employing uniform RC networks. Such a development

is to be carried on to conclusion in this chapter. In accordance with

the discussion in Section 2.0, it is preferable to achieve an RC synthesis

which is embodied in a cascade configuration, as opposed to the alternate

ladder connections of RC one-ports depicted in Figure 2-2.

A general cascade synthesis is detailed in this chapter, with

the help of Richard's Theorem. Using the mathematical groundwork pre-

sented here, the transfer function and gain function synthesis problem is

considered in Chapter 5.

4.1 Realizability of Z(s) by UR Networks

The necessary and sufficient conditions that ZM(s) may be real-

ized under transformations (7) and (8) of Chapter 2 by a finite number of

URCS and URC0 imittances are shown to be

Theorem IV.* Z(s) may be realized as a driving point impedance of a

finite number of elemental URCS and URC5 networks using (7) and

(8) of Chapter 2 if and only if

*For proof, see Appendix.
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a) Z(s) may be expressed as

n 2ki ta --

Z(S) = O a 2 t h 
2

z2, I-s tan -s + rP1
2 i=. vs E taneh2

b) where kD, ko, andki>O

An equivalent theorem may be formulated, such that

Theorem V.* Z(s) may be realized as a driving point impedance by a

finite number of elemental RC-S and URCO networks using (7) and

(8) of Chapter 2 if and only if

a) / Z(s) is a rational function of ea / s

b) Re (/'s Z(s)) = 0 for -- jq, q real

or s = -q?, q real

c) Re (V'- Z(s)) _0 , Re.1/s > 0

It is noted that Re Z(s) = 0, s - oo.

Returning to the inverse transformation of either (11) or (12)

in Chapter 2, it is clear that the most useful analytic expression of

the RC impedance, ZM(s), must be of the form

-( r o o N( es / p) ()R-()D(ea/S)

*For proof, see Appendlix.
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where N and D are rational polynomials in e a / . The rational function

Z(S) may then be arrived at by substituting

ea/T- + S (2)

1-S

into (1), thus transforming Z into a rational function of S. It is im-

portant to be able to arrive at (1) in a direct fashion, if Z(s) is orig-

inally specified by, say, a graphical magnitude function.

Consider the construction of

'/ ZIRc(S) D (eas) (3)

s=Jco sMJi)

A plot of the magnitude of the left side of (3) in db., as a function of

log w, will be related to a similar plot of (1) by the simple difference

of 10 db./decade, arising from the factor /R. Thus if (1) is specified

graphically, (3) may be similarly represented.

Because Z(s) is an M function, it is at once apparent that

1Z(s) I must be a monotonically decreasing function of co, and that

Z(oo) = 0. With these conditions satisfied, it may be possible to approxi-

mate Z(s) as will be described presently.

Theorem VI. Z(s) may be realized as a URO network under (7) of Chapter

2 if and only if /5 Z(s) may be expressed as
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a8jg 2(m-n) +1 2a/-s 4/'S
(e + 1) TI (e + Bke + 1)

Z(s) = 1

(e - 1) TI (e + Ake + 1)
1

or its inverse, where Ak > Bk, tAkj < 2, JBkl < 2 and m n

or n - 1. Note that either one Ak or one Bk may be zero, but

not both.

4.2 Realizability of Z(s) by URCR Networks

Under the relationship which has been carefully established

between s and p/(l+p), it is clear that Theorems IV, V and VI hold for

RCR networks with proper modification. In Theorem IV, (a), replace s by

s/(l+s) in the right side of the equation. Make the same substitution in

parts (a) through (c) of Theorem V, as made in Theorem IV. Again, make

the substitution p S s in the right side of the equation of Theorem

VI. The above statements refer to the fact that the theorems may be

applied directly to URCR functions after transformation from P' to s.l+p'

Note that Z(p)j will be finite and non-zero.

The construction of RCR realizable functions follows from the

form indicated in (3). In the case of the RCR networks the desired immit-

tance function is first approximated as ratios of polynomials in c a &P/ -1 ;

the graphical approximation of such polynomials is indicated from Figs.

3-4 through 3-7. Additional design freedom is available from the constants

'a' and RAC, compared to the T synthesis.
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4.3 Realization of Z(s) by Cascade Synthesis: Introduction

Consider the properties of a cascade configuration of several

CO lines. Each line is assumed to have the sane RoCoL2 product, but

different RoL terms. This restriction is implied by the use of the trans-

formation S = tanh a/s/2 in which ,W, is kept constant for the entire

synthesis.* It is convenient to consider the ABCD cascade matrices for

each of the C line segments. Letting T = ROCOL 2 = (&/2)2, and the total

segment resistance Ri = ROL, the cascade matrix for the ith segment is

given by

Ai Bi (cosh i) R 1 Rj tanh s

[== cosh s

Ci Di rs-,r sinh/F cosh45 /I tanh i 1

it Ri L Ri

(4)

The overall ABCD matrix for n different sections in cascade is

[A B'1 Ri tanh rs-T

(cosh ( 5)
C D ~~i i -s tanhjWs

Bi has the units of an RC impedance, while Ci has the units of an RC

admittance. Thus it is possible to discuss an equivalent LO network, by

Theorem I, for which Ai and Di are unchanged and

1i sBL, j-- I V- (6)

*This practically restricts the entire network being synthesized to be made
up of RC segments of the same length. In Section 4.7 the decomposition of
the network frunction being synthesized into several networks with separate
L's is considered.
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The overall matrix (5) is transformed to that 6f the associated uniform

structure:

A B 1 i tanh -sT-"
A n n1

=(Cosh 46-7) (7)

0 Ri

Application of the transformation

S3(r) = tanh 2 (8)2

to (7) results in a matrix which is again LC in the S plane; for driving

point imittances, the resulting functions will be realizable as lumped

immittances in the S plane. Note that under (8) the resulting transfer

immittances, as opposed to the driving point terms, cycle every 'a/2'

units instead of every 'a' units. This arises from the fact that for URC

networks, the transfer quantities involve the factors

a/i -805i

cosh a- =e-' + e= 1 (9)
2 2

and
els -a/i

a/i e - e"-'  Ssinh 2 2 (10)

while the driving point impedances involve only

ta /-s e4 - 1 = s (ll)
2 eV + l
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Thus, for the general ith RC segment, (4) becomes

A B1 --

(a)

IL Ri

For two such identical segments in cascade,

A B 1I+$S2 2R-

cc ,( (b)

Likewise, for n units in cascade, with n an even integer, the resulting

networks will all involve only integral powers of S. Similarly, the re-

spective rY) matrices may be calculated to be

/T ._(__s2)
Ri S Ri S

[Y )I -- (a)

RiS Ri S

and (13)

rT (1+S2) _(,_S2 ) rr

2Ri S 2Ri S

=Y]II (b)

(1-s) rT V (1+82 )

2Ri S 2Ri S



52

4.4 Cascade Synthesis by Richard's Theorem

A straightforward BC driving oint immittance synthesis procedure

applies Richard's Theorem1 6 , 2 1 to the C network representations in the

S plane. Richard's Theorem was first exploited by Bott and Dffin in

their lumped transformerless synthesis procedure and has also been used

in the design of UHF and microwave lossless filters. 2 6 ,27 It may be

stated as follows:
2 8

If Y(S) is a positive real function, and

Y(S) - S Y(1)
YL(s) = Y(1) Y(l) - S Y(s)

is constructed, YL(S) is again a positive real function. Addi-

tionally, if Y(S) is LC, YL(S) must be LC.

In light of Richard's Theorem, consider the cascade admittance

Y1 of n sections of RC line, in Fig. 4-1. It may be shown that

- 1 Ri Yi+i + / tanhfsr (14)
Ri 1 + Ri Yi+j tanh /s

Solving for Yi+l(s),

1 i (s) - rs t a(15)
i s 1 - Ri ( ) t

where it is assumed that Yi(s) is a given and realizable C function.

Thus Yi(s)/r must be a realizable 13 function in the Js plane. In

particular,
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Ri YlI +,/Ttnh/
Y (,) 1 . . t

Yin ) R-- 1+ RiYi+jh sT (16)

Similarly,

Ri Y -(s). /- tn r

Yi+. (/) ts (17)
Ri 1 - Ri Yi(s) tanh

is an 1E driving point admittance in the jg plane, and under (8) may be

transformed into Yi(S), a PR and LC function in the S plane. In a like

manner, if (8) is again applied,

1 Ri Yi(s) - sY i+ l C S iR,S~~~r --R --R S Y(S)

/- Yi(s) -s R
Ri r T _ S Y ( S )

Ri

Observe that the final expression in (18) is identical with that

of Richard's Theorem if /T and Ri are positive and thus Ri is uniquely

specified for each line segment. The process is repeated until Yn(S) = I/S

or S remains. The process will always so converge,16 as is noted in the

next section. The significance of the theorem in the present application

is that an BC line may always be 'extracted' from a desired function, and

the resulting simpler driving point admittance may always be realized as

a cascade of a finite number of BC lines through a repetition of the
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process. Thus any driving point imnittance which fulfills the conditions

of Theorems IV, V or VI may be realized as a cascade configuration of EC

lines. By application of Sections 2.3 and 4.2 WR functions may similarly

be constructed.

4.5 Eamle of RC Cascade Driving Point Synthesis

In order to illustrate the application of Richard's Theorem,

consider the realization of Z(s) corresponding to Z(S) = (2+S9)(S 2+25)
(S) (S2+16)

Four ladder connected U0 segments (one ports) would realize the driving

point impedance alone. This is an undesirable configuration. Four RC

cascaded two-port segments are required, but allow a desirable fabrica-

tion technique. To begin the synthesis, suppose that the original speci-

fications require / = 1.

W(S) S Y(S) ( /Z(S) S( 2 +16) (19)Y (s = Ys) =1/z~) =(62+9)(s2+25)

i(1) ---- 1 (1)(17) .0654
R1 = (10)(26)

SYCS) -

Y2 (S) -1)
R1  1

- S Y(S)

S(S2+16) 0654 1

S.0654 (S2+9)(S 5
.0654 - 82(S+16)

(S2+9) (S22 )

W-1 -7142
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Now, let Y2 (S) be fabricated. By Richard's Theorem, Y2(S) is PR and LC.

Y2 (l) = .00454 (25.8) = 00700 = 1
16.75 R2

Ys(S) = .007 Y_2 (S) - .00700 S

.00700 - S Y2 (S)

.oo454 s(s2+24.8) 007 S

= .007 S2+15.75

.007 - oo454 s2(s2+24.8)
S2+15.75

= .00381 SLAS -
(s2+24.4)LS

Finally,

Y3(S) is PR and

Y3(i) = .00381 = .000150
25.4

Y4S) = .00015 Y(S) - .00015 S
.00015 - S Y2(S)

3.81 S

= (.00015) .154. S2(3.8) - .00015 3.65.':"

.15 S2+24.4

= 6.18 x 10-6 S

The network corresponding to the previous calculations is found in Fig. 4-2(a).

The physical embodiment of this network is pictured in Fig. 4-2(b).
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4.6 Exanle of RC Driving Point Synthesis From Graphical Magnitude
Specification

As a typical problem, consider synthesizing the function depicted

in Fig. 4-3. The first step is to normalize the graph with respect to

frequency and it will be assumed in Fig. 4-3 that this has been done. Appli-

cation of the magnitude curves of Chapter Three within the framework of

Theorem VI suggests that the graphical data of Fig. 4-3 may be approximated

by

Z(s) = ea"r + 1 ew'/  - i.9e a /  + 1 (20)
Jr eav" - 1 e2&r s + ea/ ' + 1

Referring to Fig. 3-1, B1 = -1.9 is used because of the wide frequency

spread (almost two decades) between break points. Eq. (20), plotted in

Fig. 4-3, is compared with the magnitude-normalized original specification.

Note that the magnitude normalization (by 120 db.) simply involves multi-

plication of resistive values by l( s and division of all capacitance values

by the same number.

Using the transformation (2), (20) becomes

Z(S) 1E 3.9 S2 +0.1]
S I S2 + 3

3.9 S2 + .o256 (21)

S S 2 +3

In order to apply Richard's Theorem, the associated admittance function

is found to be

Y(S) + S3 (22)
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from which

Y(=) 1 (23)

Since Y(1) is known, Yj(S) may be computed to be

Y1(S) = Y(i) Y(S) - S Y(i) (24)
Y(1) - S Y(s)

. S2 +.0256I
S29 s +3

s 025+.256-

2.9 S(S2-i) = 2.9 S (25)

(s0+.i)(S 2 -) S2 4.l

Then

Y1 (1) = 2.64 (26)

Y2(S) = Y1 (i) Y (S) - S YI(i)

Y(i) - S Y1(S)

=2.64s 2.64-2.64S2]
-.26 S2+.26

= 26.9 S a ..- S (27)
R2

The individual segment parameters are found to be

1 Ro 1 RI 1 1 B2 1
TI7 =(7, 2. 21) T j62.9

(28)
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The physical embodiment of the normalized network appears in Fig. 4-4.

/T = RC may be chosen for the proper frequency scaling. If RC = 10-6,

= i0- and

Ro = 10- 3 
n R, = .378 x 10-f3 R2 = .0372 x 10-3

(29)

cO = 10- 3 f C 1 = 2.64 x 10-3 f C2 = 27 x 10"3 fco Ro

To raise the impedance level by iCP (or 120 db.), the previous values are

changed to 1P x Ri and 10-8 x Ci , or

p i03 n RI' 378n =37.2 n

C=10- f C,, =2640 pf. C2 = 27000 pf. = .027 uf.

As a check on the validity of the technique, Z(s) for the network of Fig.

4-4 may be cumputed (without recourse to the S plane) to be

Z(s) B[ (R +R 2 )B 0,18- tanh rS (Ro + RI)(R1 + R2) coshe 'S - lei

(30)

and with the normalized RC parameters, this is seen to be

o E e2a/ - 1.9 ea/ '  + 1

/i+- hrd-T e 2aWs + e /  + ] (1)

which checks with the original specifications.

The preceding network was experimentally built using Teledeltos
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Resistance Paper* firmly pressed against copper conductor, geometrically

formed as indicated in Fig. 4-4. The resistance of each segment was meas-

ured precisely. The capacitance per square inch for such a layout is

known from previous experience to be 310 picofarads per square inch. For

this experiment, Ro was 115 kilobms, R1 was 43.6 kilolus and R2 was 4.26

kilohms. The RC product was 7.95 x 10"5 for each segment. The experi-

mental and mathematical realizations are considered in Fig. 4-5, where

excellent agreement is to be noted.

4.7 Concluding Remarks

In this chapter, a straightforward distributed RC synthesis

technique has been evolved which significantly does not require recourse

to a digital computer for implementation. The broad class of monotonically

decreasing functions of real frequency which may be synthesized by these

techniques has been detailed in Theorem VI. The eventual realization of

the driving point functions by cascade RC structures was shown to be of

practical significance, and theoretical examples and experimental results

were shown to compare closely. Additionally, URCE networks were introduced.

These networks allow a broader class of impedances to be achieved, and per-

mit non-zero driving point impedances to be realized at high frequencies.

Certain limitations are inherent in the classes of functions

which may readily be synthesized by the previous techniques. Further re-

search directed toward relaxing these restrictions is indicated.

*Available frm Western Union Co., New York City.
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Some information is available in the literature which indicates

that non-uniform lines 9 are superior in certain performance aspects to

uniform lines. Their use in the previous driving point synthesis without

recourse t computers would be possible, if for the variously tapered

lines, conformal transformations were found so that the synthesis might

be carried out in the S plane.

A more immediate limitation of the present method arises from

the use of a constant RC product for each URCO segment. As seen from

Figs. 3-1 and 3-3, breakpoints in the magnitude function may be achieved

over about two decades. If a network function is to be achieved for which

breakpoints exist over more than two decades some kind of network decom-

position into subnetworks must be employed; each subnetwork will be char-

acterized by a different HC product and will be used to realize breakpoints

in different frequency bands. In the normalized plots of Figs. 3-1, 2 and

3, it is noted that the frequency is normalized to a/2 = (RC)*, so that

the plots may be applied universally.
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CRUM FIVE

SYMTHIS OF BC TRANSFER FUNCTIONS

5.0 Introduction

The transfer function synthesis problem in lumped networks is

often phrased as follows" "Design a network N with a specified voltage

(current) gain, working frcm a source into a given load." Since either

gain function may be written in terms of a driving point immittance, a

transfer inmittance, and the given load immittance, the above requirement

is identical to asking the designer to find a network with a prescribed

driving point immittance and prescribed transmission zeros. The trans-

mission and driving point functions are intimately related, however, as

evidenced by the Fialkow-Gerst conditions. Assuming that the two func-

tions have the same denominator, the specification of y1i and the zeros

of Y12 describes y12 within an arbitrary constant. Often this is the

best that can be achieved, although in the case of gain functions it may

be preferable to attempt to keep the constant as large as possible in

order to avoid unnecessary inband loss.

A similar synthesis problem for C networks will now be under-

taken. Although the synthesis may be based on either the S plane or the

s plane, it is usually advantageous to design in the former. The specific

problem under consideration is the realization of a network having a pre-

scribed gain function, fed by an ideal current or voltage source and work-

ing into a load which is nominally resistive. It is convenient to assume
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that the load is coupled through a distributed capacitance, aa' is typically

done in current microelectronic amplifier design1 2 (see Fig. 5-9). If the

load is directly connected to the network, it is realistic to assume that

some stray capacitance exists across it. The effective load is thus a

lumped parallel RC network, whose driving point impedance is rational in

a, but not rational in S. This poses a distinct problem, since the power

of the synthesis techniques under consideration lies in the fact that

driving point impedances which are realized are rational in S. This

situation may be handled with no difficulty, however, as shall be seen

presently.

It is useful to make some preliminary observations at this point

concerning the origin of the lumped RC load which has been mentioned.

First, the load may be exactly what is postulated: a resistor, with some

lumped capacitance across it. Second, the parallel RC circuit may itself

be an approximation, valid within a certain degree of accuracy and over

a certain frequency range, of a more general RC network such as the input

of a thin-film transistor.19,20  In the latter case, a distributed RC

network approximation might have been more appropriate to begin with,

and should have been formulated. In the former case, it is necessary to

approximate the driving point characteristic of the lumped RC load by a

distributed BC load which is then used in the actual synthesis procedure.

This approximation is particularly simple at low frequencies (below aRC - 2),

where a single URCS network approximates the lumnped case quite well. 2 9

Over the range indicated, both the postulated lumped network and its dis-

tributed counterpart are primarily resistive. At higher frequencies, it
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may be necessary to employ a more complicated distributed load to approxi-

mate the lumped load characteristic, in accordance with the methods of

Chapter Three.

5.1 Transmission Zeros in the S and the s Planes

Consider the mathematical forms which the gain or iumittance

functions may assume to be realized by S plane techniques. In the S

plane, transmission zeros may generally be realized anywhere except on

the region of the positive real axis between the origin and unity. This

segment corresponds to the entire positive real axis in the s plane.

Generally, then, zeros may exist with quadrantal symetry in the S plane,

or in conjugate symmetry on the jS1 axis. In the S plane they will be

finite in number. By reference to Fig. 2-3, quadrantal symmetry of poles

or zeros in the S plane corresponds to left half-plane conjugate symmetry

of a family of poles or zeros in the s plane. Conjugate imaginary zeros

in the S plane map into negative purely real zeros in the s plane. These

equivalences should be borne in mind, so that one may freely work in either

plane.

If the transmission zeros in the S plane occur with quadrantal

symmetry, terms of the form

P(s) = (e 4 W" + Be"3/ + (2-B) es / s + Bea/s + 1) (1)

with oo > B > 1 (2)

will occur in Y12(6). Such a form is obtained by application of the
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transformation (2) of Chapter 4 to the S plane polyncmial, (S 4 + a').

By similar applicatid, conjugate imaginary S plane zeros are reflected

in Y12(s) by terms having the form

Q(s) - (e 2ss+ Be / ) (+ 1

where iBI < 2. It was shown in Section 2.2 that each URO cascaded two-

port which is employed contributes a numerator factor in the S plane

R(s) = (1 - S2)i (4)

These factors represent zeros at S = *lor s = co, which are physically

caused by the shunt capacitance of the RO elements, in cascade.

Thus finite transmission zeros on the imaginary S axis (or negative

real axis of the s plane) must be realized by other than cascaded RC ele-

ments. When such transmission zeros are realized, it may be possible to

realize transmission zeros with quadrantal symmetry in the S plane. One

of the objectives of the present chapter is to achieve finite negative

real transmission zeros which assist in meeting prescribed characteristics

in the s plane.

In order to realize finite transmission zeros, stubs (which are

really shunt elements) can be employed to modify the cascade type synthesis

of Chapter Four. Fig. 5-1 illustrates the new configuration.

A 'resonant stub' in the S plane represents a shunt element which

realizes one pair of conjugate imaginary S plane zeros of transmission by

effecting a "short circuit" at the frequency of interest. This entails
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FIG. 5- 1

A CASCADE-STUB REALIZATION

STUB "A"

Pr-y 1s yIS Y(S) VS) y4s
Y(S) (S) 2 STUB 5 B YS

FIG. 5 -2

CASCADE-STUB EXTRACTION CYCLE
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the removal of one term of the form (e a + Bea/ + 1) from the cor-

responding s plane expression. Other RC elements will then be extracted

to complete the cycle associated with the desired transmission zeros,

following the approach of the work of Ikeno27 in his lossless coaxial

filter designs.

5.2 Qalitative Discussion of Permissil'.o Transfer Functions

Using S plane synthesis procedures to be detailed in this section

and Section 5.3, it is shown that the class of transfer admittances in the

S plane described by

n /

-yakS) M 1 (S2 + Dp) Fl _. S~2-Y1S , M2 (5)
s' [S2 + C2
Si k

where

m, n, q are positive integers

q/2> n

m > n + q/2-1

M21 = real positive nmber,

may be realized within an arbitrary constant. Under the technique, the

zeros of transmission, along with the exact driving point admittance, are

achieved.

In the s plane, which is the plane of definition of the EC net-

work function, application of the transformation ea/  = 1 + S leads to
I-S

the following transfer admittance.
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(eqa/s/2)(2 (m-n)-q+l) a/ ni 2/ + e + 1)

=1iwe(e + 1) 1(e +Bje +1-y2]L(s) M 1

(e0 - 1) f (e2 W/ + Akek/s + 1)

(6)

where

JAkI < 2 (7)

jBj < 2 (8)

It is of considerable interest at this point to gain some insight into the

real frequency magnitude properties of this function, before proceeding

to stipulate realizability conditions on (6). Qualitatively, the terms

of principal interest in (6) are the second order exponential polynomials.

If comparison is made between the Criving point expression of Theorem VI,

and the expression in (6), it is noted that the condition Ak > Bk does

not apply to (6). This is true because pole-zero alternation in the S

plane is no longer required for a transfer impedance. The second order

exponential polynomials in the numerator of Eq. (6) have magnitude func-

tions which increase monotonically with frequency. They are to be chosen

in accordance with the graphical representations of Chapter Three, and

the realizability conditions to follow. The second order polynomials in

the denominator of (6) cause y2l(s) to decrease in magnitude with increas-

ing frequency. From the known properties of the expressions in (6) it

is anticipated that there will be little difficulty in accomplishing low

pass characteristics of rather arbitrary graphical specifications. The

second order polynomial factors allow the shaping of such characteristics.
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Because of the basically low-pass nature of RC networks, including those

with stubs, there will be difficulty in realizing bandpass characteristics.

A method of overcoming this obstacle is suggested in Section 5.6. Without

the stubs, however, it would be impossible to realize the second-order

exponential polynomials in the numerator of (6), or, for that matter, any

finite transmission zeros to assist in shaping the transmission magnitude

characteristics.

The 'cascade and stub' network introduced in Fig. 5-1 requires

the stubs to extract the second order transmission numerator terms. The

cascade elements will contribute zeros at infinity in the s plane which

is to say that ygl(S) will contain factors of the form (1-S2). At least

one such factor must exist for each transmission zero pair removed in the

S plane, which is why the condition q/2 > n appears.

5.3 Transfer Function Extraction Cycle for Finite Zeros

The motivation and the technique for the 'cascade and stub'

transfer synthesis procedure is evident if the following extraction cycle

is postulated. With reference to Fig. 5-2, for synthesis in the S plane,

the finite product of second order (Bi) exponential polynomials of Eq. (6)

corresponds to the (S2 + D, )term of Eq. (5). The latter terms represent
U

Jn transmission zeros in the S plane, and it is these zeros which the

stubs of Fig. 5-2 will be called upon to supply.

In order that y2j possess a zero at S = JQ, let Y2(JQ) = oo.

This pole will be directly attributed to stub B. Since

Ya(JQ) = (9)
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and by Richard's Theorem,

Y2(S) = Y1(l) Y±(s) - S Yi(1) (10)

Y2(S) must have a pole at JQ implying

Y1 (1) = s Y1 (s) (3)

S=JQ

Thus

Yi(1) = JQ Yj(jQ) . (12)

Since

Y(S) ='Yi(S) + S/-/RI , (13)

S/,/Ri must be chosen so that both (12) and (13) are satisfied. With

S = 1, (13) implies that

Y(1) = Y1 (l) + ,//IR, (14)

Also, with S = JQ, (13) becomes

Y(JQ) = Y.(JQ) + JQ 3IR1  (15)

Solving (14) and (15) for JQY(JQ), and substituting in (12),

IT = (Y(l) - jQ(jQ))/(l + Q2) (16)

or

RL - rT (1 + 2)l(Y(l) - JQY(JQ)) (17)
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The specific procedure to synthesize yj1 (S) = Y(S) and y1 2(S)

simultaneously, follows. yii(S) = Y(S) is such that either

Y(o) =0 or Y(oo) = oo . (18)

If the former is true, a cascade section may always be extracted, using

Richard's Theorem, so that

Y( 0) = oo (19)

When (19) is satisfied, an URCO element always may be removed whose mini-

mum total resistance is given by

Ro = rT S/Y(S) (20a)

and whose total capacitance is given by

Co = Y(S) rTls (20b)

At a finite transmission zero JQi in the S plane, Y(JQi) is purely ima-

ginary. For each zero of transmission, ccmpute

, - (1 + 0)/(Y(i) - JQY(JQ)) • (21)

Of the set <Roi, Ro0 , some elements may be negative, some will be posi-

tive. Remove the largest positive member, R1 , as a shunt URCO stub, of

admittance /TF/R 1 . The remaining admittance is seen to be

Y1 (S) = Y(S) - S r/lI' . (22)
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Since, rTIRI < r'glRO,

Y(oo) =O (23)

Remove a cascade element, Y(1), from Y1 (S), and by Richard's Theorem

the remaining admittance is given by

Y2 (S) = Y1(l) Yi(S) - Sy1 (i) (24)
Y1(l) - SY1(S)

Now it is seen that Y2(S) has a pole wherever Yj(l) = SY1 (S).

But by (12), at a transmission zero, YI(1) = jQYI(JQ). Hence Y2 (S) must

have a pole at the required transmission zero. This pole may be removed

-by a stub whose admittance is given by

S [ Ye(S) S2 Q25

Y5(s) = s S2 , 4 (2)
s+ Q

which may itself be realized by two successive applications of Richard's

Theorem, as a cascade of two URCO two ports. The remaining admittance

Y3(S) is

Y3 (S) = Y2 (S) - Ys(s) (26)

Thus Ya(oo) = 0. A cascade element may again be removed and Y,(co) = oo.

The cycle is complete.

5.4 Simultaneous Realizability of yii and kyip by the Cascade and

Stub Method

The transmission matrix of the desired network in the S plane

may be specified as
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Svi(s) U1l

K [ ( (](27)p/--)q f(s) u20S) v2(S)J

where the passivity of the network requires that

va(S) v2(S) - ul(S) u (s) = (1 - s2)q (f(s))2  (28)

In terms of this matrix,

yll = D/B, Y21 = Y12=- 1/B and Y22 =A/B (29)

may be translated into

y11 (s) V2(S)" (30)ul(s)

y.2(s) = y21(s) f (S) (31)u1 (s)

y22(S) =v(S) (32)
ui(s)

The zeros of f(S) will yield the finite transmission zeros.

The following theorem concerns the realizability of transmission

zeros, in the S plane, and is due to Kasahara and Fujisawa, as reported

by Ikeno.27 Ikeno's work has been concerned with the design of lossless

filters made of coaxial cables.

Theorem VII. The zeros of f(S) (which are the transmission zeros) will

be realizable together with a driving point impedance with no

negative elements if
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a) S = co is a transmission zero of y21/S2

b) All finite Jfl transmission zeros are greater than the

greatest root of v1 (S) or ul(S), where S = E + Jfl.

c) At least one finite Jfl transmission zero is greater

than the greatest root of v2(S) or u2(S).

If only one driving point admittance is specified, the conditions

of Theorem VII are relaxed to those of Corollary III.

Corollary III. The zeros of transmission of Yax are realizable

simultaneously with a given driving point admittance y1i using no

negative elements if

a) S = o is a transmission zero of YZI(S)

b) All finite jn (S = jn + 1) transmission zeros of Y12 are

greater than or equal to the largest jn pole of y12 (S).

c) At least one finite Jfl transmission zero is greater than or

equal to the greatest finite zero of y1 i(S).

The following theorem, derived from one by Ikeno, as translated by Matsumato 27

relaxes the conditions for transmission zero realizability, and considers

the inclusion of some negative elements.

Theorem VIII. A 'Brune' RC cycle, with a negative UROS one-port, as

shown in Fig. 5-3(a), may be transformed into an equivalent unit

loop, shown in Fig. 5-3(b), where b = c + d, a <b and

abc(l +
e := P
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f _cd(b - a)

p

bd(b + aa2)
o,2p

h ad(b + ac)

and p =b 2 + 2(ad + bc)

The network of Fig. 5-3 may also be redrawn, due to a theorem which may
26

be derived from Kuroda's Identity, and was derived independently by the

author.

Theorem IX. The two networks of Fig. 5-4 are equivalent, if

R' = R2 +

iRR R. + Ra

T

C2 -

and both networks may be turned end for end.

The significance of Theorem IX is that it permits a (possibly negative)

series RC segment to be replaced by a similar shunt segment, which may be

realized by a stub, and widens the applicability of the Brune RO Cycle of

Fig. 5-3.
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If the network of Fig. 5-3 is followed by an URCO two-port, the

URCS series element of admittance C/S may be replaced by an LEO shunt

one-port following the added URC0 two-port. This is illustrated in Fig. 5-5.

Furthermore, the two networks of Fig. 5-6 are equivalent.

Now return to the realizability conditions for the transmission

zeros. If 'unit loops' are permitted, the conditions of Theorem VII may

be relaxed to those of Theorem X. 27  Essentially the unit loops with posi-

tive elements permit the limited replacement of stubs with negative para-

meters.

Theorem X.* Let the finite jS1 transmission zeros of y12(S) be 0 < ai _< C2...

< ak...< an < oo. These zeros are realizable if there exist

n + k - 1 or more real frequency poles of Y12(S) that are not

greater than ak .

Note that under Theorem X, S = 0 may not be a transmission zero (and

thus s = 0 may not be either), since there must be (at least) one pole

less than zero on the positive jO axis, which is impossible.

The poles of y12(S) and yxi(S) are chosen by the network designer

if only the overall gain function is specified, since the gain function

involves the ratios of the zeros of yii(S) to those of yij(S), and the

immittance poles are not specified. This allows more freedom in meeting

the previous realizability conditions.

*The statement of this theorem, originally proven in Japanese by Fujisawa,
was translated in reference 27 by Akio Matsumato.
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The conditions of Corollary III may be considered in the s plane:

Theorem XI.* Using a cascade and stub RC network y12(s) may be realized

simultaneously within a constant with yal(s) if

a) yii(s) fulfills the conditions of Theorem VI and possesses

the same Ai polynomials as Y12(s).

b) -y12(s) may be expressed as

w 2as a"'
Tse +Bie + I

-yia(s) /s-.,, _e _____
/  1

a -  I e a + l2(w-m)+q-1 m 2a/- %/i
e -l (e +1) 17(e + Aie  + 1)

1

where

1) I Bil, I Aij < 2, Ai+j > Ai, Bi+j > Bi .

2) Bi > Am, i = 1, 2, 3, ... w.

3) BW > Cw where Cw is largest Cj of yll numerator
polynomials.

4) m>w+q2 .

5) q/2>w

Theorem X may be written in terms of the variable s, as Theorem XII.

This represents a relaxation of the conditions of Theorem XI.

Theorem XII.* Using a cascade and stub RC network, including unit loops

if necessary, y12(s) may be realized simultaneously with yii(s) if

a) y1i(s) fulfills the conditions of Theorem VI, and

b) y12(s) may be written as in Theorem XI, where the following

conditions replace those of Theorem XI:

*The proof of this Theorem is in Appendix I.
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IBi < 2, 1AiI < 2, Ai+1 > Ai, Bi+j > Bi, and there

exist (w+k-l) 'Ail terms such that Ai < Bk, i = 1, 2, ...

wk-1. Also, m > 2w-1.

5.5 Synthesis of RC Gain Functions

The synthesis of RC voltage and current gain functions follows

directly from the simultaneous synthesis of the driving point and transfer

immittances. Three particular cases will be considered here. Referring

to Fig. 5-7, N represents the RC network which is to be synthesized. It

will be assumed that the overall voltage gain function, including the

presence of a specified load, is to be achieved, i.e.

A,= Ea2/Ei
I2 = 0 (33)

Each of the three network configurations and terminations chosen

represent a typical application in microelectronic distributed network

design.2'12 Following a discussion of each case, the synthesis procedure

will be outlined by examples.

Fig. 5-7(a) requires thaz a voltage gain specification E2/Ei be

met, when the resistive load has some known, distributed shunt capacitance

across it. As discussed in Section 5.0, this includes the practical case

of a lumped resistive load, with some shunt capacitance across it. The

voltage gain is given simply by

Av = y21A/(y22 + YL) (34)
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Since YL and Av are specified, the problem reduces to one of realizing

y2l and yga for the network N. It will be seen later that there is con-

siderable freedom in the choice of y2a and Y2a, and this freedom may be

exploited profitably.

The use of a practical coupling network at the output, as in

Fig. 5-7(b) presents more of a challenge to the network designer.

Since the overall configuration involves two cascaded two-ports, (34)

may not be applied directly. In fact,

W/EI = Y21/(Y22 + YL) (35)

instead of Ea/Ei. The Z matrix of the coupling network in Fig. 5-7(c)

(or Fig. 5-7(b) , with zil and z22 interchanged) is given by2

R tanhrs-Rc tanh 7sRc_ 2- a -

Z = (36)

-7=sW ~ ~ tah _ 's" t 2

Thus for the coupling networks of (b) and (c), the open circuit voltage

gains are given by

A = 2 ()z22 2R i

R (38) A
AV2C Z1 1f 2 -tanh V/iW tarnh 238

Z11 R 2.2
-7'R tanh 50~
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By rewriting the voltage transfer function for Fig. 5-7(b) as

Av.__ x (39)
12 = 0 YL in place

the problem of working with cascade parameters of N and the coupling net-

work is avoided. Noting that Fe/Es has the db. gain characteristic given

in Fig. 5-8, the necessary graphical characteristic for N, E3 /E 1 , may be

drawn. The problem is then reduced to that of part (a) above. In par-

ticular, if Av is given by a magnitude plot, in db., the difference func-

tion Es/E± with YL in place may be graphically computed in a straight-

forward fashion , since

&E. I =Awl Fe(0YL in place db12 = Odb

Realization of a network N which possesses such a characteristic when

loaded by YL completes the problem.

A very similar solution is possible in the case of the config-

uration of Fig. 5-7(c). The only difference is that the coupling network

function,

AV2 =E 3 1 (41i)
12=0

is given in Fig. 5-8, and is of the high pass type. Given Av = F4/E2,

and knowing Av2 , it is rather simple to find E3/El with YL fixed in place,

and thus the problem is again reduced to that of synthesizing a stipulated

yxx and y23. pair.
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5.6 Gain Function Synthesis Example

Suppose that it is desired to build a network, working into a

load as shown in Fig. (5-10), having the gain characteristic of Fig. (5-11).

At first it will be assumed that the RC product of the URC segments com-

prising network N will be the same as the RLCL product. The characteristic

of the load network, Ee/E3 , is known and presented in Fig. 5-8(a). To

find the voltage gain characteristic Es/El for the network N, loaded by

the output network, the characteristic of Fig. 5-8(a) may be subtracted

from that of Fig. 5-11. The resulting gain function for N is plotted in

Fig. 5-12(a). The specifications of Fig. 5-11 are satisfied to the left

of the bandpass region by the high pass network characteristics. Network

N will now be designed to meet the graphical specification of Fig. 5-12(a),

within an arbitrary constant.

The RC product is chosen by noting in Fig. 5-11 that the desired

lower 3db frequency aiL must meet the condition

at = .25(42)

Applying the techniques of Chapter Three, the characteristic for the

network N may be approximated closely by

ears (e -ar + 1.9 e ' + )(4)

(e 2 / - 1.2 e + 1) (e24s + 1.2 e + 1)

Letting

ea/ - e2a = 1+2S+ 2

e + 1-5 (+ S)2
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Ar(S) - (1 - S2) (S2 + 39) (4)
(S2 + .25) (82 + 4)

within an arbitrary constant.

Since

Av Y1 (345)
y22 + S k

y2(S) and y2(S) must be chosen so that the realizability conditions of

Corollary III or Theorem X are mt.

If the admittances are chosen so as to meet the requirements of

Corollary III, and to provide for driving point pole-zero alternation,

-y2(S) =( - S2) (S2 + 39) (46)
S (S2 + 1)

and

Y + k S = (s 2 + 4) (S2 + .25) (47)
S (S2 + 1)

k = .1

then the driving point admittance of N is

y92(S) 9 . (S2 + .255) (S2 + 4.355) (48)
S (S2 + 1)

The conditions of Corollary III are met. The zeros of y23 contributed by

(S2 + 39) and the (1 - S2) term may be achieved in one extraction cycle.

The minim=n resistance of a single segment shunt stub which may be ex-

tracted at first is given by (20(a)) to be
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R0 -- Y(s) -- (

Applying (21) at the transmission zero, S = J v%3,

rT Y(-l) - ZQY(.IQ) =3.36 +o35.32Rol 1 + 2 = = .967 (5o)

may be extracted. Doing so,

yi(s) =Y2-(s) - .967 S

s 4 + 4.52 S 2 +1.028-_.967( S2 + 1)
S (82 + 1)

.33 (S4 + 107.7 82 + 31.15) (51)
S (S2 + 1)

and Y1 (i) 2.3075 = 1 (52)

Then, using Richard's Theorem, a cascade section is extracted:

Y2 (S) Y(IM Y1(B) - S Y(l)
Yl(1) - S Y1 (S)

2.3075 C-2.2745 S 4 + 1.246 S + 1.028]
+ S [-.o331 S4 - 1.2455 S2 + 1.27953

159.2 (1 - S2) (82 + .4519)

(1 - S2) (S) (S2 + 39)

159.2 (S2 + .452) (53)
S (S2 + 39)
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In accordance with (25), a two-segment stub id used to remove the trans-

mission zeros due to the (S2 + 39)factor, and the resulting remaining ad-

mittance is

Y3 (s) = Y2 (S) C (54)S2 +39

where

a - 159.2 (S2 + .452) 2 = 157.36S 2  S 3

Finally,

3(s)= 159.2 (S2 + .452) _ 157.36 82
s (s + 39) S (S2 + 39)

1.84 (S 2 + 39) 1.84
s (s 2 + 39) s

.' - = 1.84

RH3  =- _ (55)
1.84

and the design is completed. The final network is shown in Fig. 5-13.

Theoretical results were verified by experimental data, and the results

which show good correlation; are given in Fig. 5-12(b).

5.7 Limitations of Transfer Synthesis Technique

One important limitation in the final design of the previous

example is clear: a 20 db. in-band loss occurs. This loss need not be

encountered if the restriction that the RC product of network N be the

sae as the RLCL product is dropped.
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If RC is different from RLCL, one of two cases obtains. First,

the RLCL product may be an integral multiple of RC, by the proper choice

of RC, in which case the load admittance YL will be more complicated than

previously, but will be a rational function of S. Second, the loading

effect of the RLCL combination may be so small compared to ya of network

N that it may be neglected.

The latter case will be considered here, to illustrate the pos-

sibility of reducing the in-band loss. Consider the result if the RLCL

product is increased by a factor of 100, relative to the RC product of

network N. In Fig. 5-15, it is seen that the output network gain char-

acteristic moves to the left by two decades. The load possesses a driving

point admittance which is rational in S, but which is the ratio of two

higher ordered polynomials, due to the fact that the transformation con-

stant is still 'RC' = (a/2)2. Very little inband loss need be tolerated

in this case, as seen in the composite characteristic of Fig. 5-15. Below

the normalized radian frequency wa2 /a = 1, the load impedance level may

be kept at least ten times that of 1/y22, permitting the designer to

neglect the load driving point impedance in the gain expression for N.

Another procedure which requires further study is to decompose

the network function for N into two or more functions, each of which is

realized with their own RC products. This additional freedom might be

useful in maximizing the gain constant.

In March 1960, Kuh and Paige3 4 investigated and found the

maximum gain constant for an RC ladder network explicitly in terms of

the poles and zeros of the given transfer function. Rather straightforward
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techniques were outlined to realize the maximum gain constant, by zero

shifting and removal. Extension of these techniques directly from the

lumped finite case to the distributed network formulation does not appear

immediately feasible, and provides a topic for further study.

5.8 Concluding Remarks

A rather detailed synthesis technique has been described in

this chapter which permits the realization of finite transmission zeros

on the negative real axis in the a plane. Distributed RC elements are

arranged in a practical cascade and stub configuration. An extraction

cycle has been developed, explicitly outlining the method by which the

negative real clusters of transmission zeros may be realized. As a

vehicle for realizing these transmission zeros, exponential polynomials

have been related to transmission zeros, finite in number, in the S plane,

where the extraction cycle is explicitly undertaken. The realizability

of such zeros by the cascade and stub method has been considered in

Section 5.5, and 'unit loops' have been introduced to widen the class of

transmission functions which may be so obtained. Finally, the synthesis

of gain functions between a voltage or current source and a specified

load has been discussed, several methods have been suggested, and a de-

tailed example has been included.
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CHAPTER SIX

THE DESIGN OF EXPERMENTAL RC BNETOR

6.0 Introduction

In this chapter, a review of the restrictions imposed by the

previous design techniques on the final physical RC network embodiment

will be made. These restrictions will be illustrated by the detailed

design of a low pass filter. General expressions for the open circuit

voltage gain and the transfer admittance of sharp-cutoff q section fil-

ters will be obtained, and the frequency characteristics of such networks

will be compared with other well known filter characteristics.

6.1 Teledeltos Models Used for Experimental Verification

The experimental RC networks which were built to verify the

theoretical results of this paper were modelled with Teledeltos Paper,*

Mylar and Alminum Foil or Copper as shown in Fig. 6-1. When the Mylar

was used, and the layers were tightly compressed, a capacitance of about

200 pf. per square inch was attained. If the Mylar is omitted, and the

paper backing of the resistance paper is used as the dielectric alone,

about 310 pf. per square inch may be obtained. Experimental results indi-

cate that URC segments do not behave as predicted by their mathematical

models in Chapter Two, unless a conducting boundary is placed across the

*The Teledeltos Paper, nominally having a resistance of 2000 ohms per
square, was supplied through the courtesy of Mr. Joseph Gegliardi,
Western Union Co., Broadway at Worth Street, New York City. It is
available in large rolls.
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end edges of each segment (as in Appendix II), or the segment length is

considerably greater than their width. In the frequency ranges used for

experimental data, from audio to a hundred kilocycles, a length to width

ratio of at least five was maintained.

Difficulties in achieving practical EC structures often arise

from several considerations. A network of several segments is to be

deposited by three individual depositions. The resistive layer, for

example, is to be deposited for all of the segments at once. Thus the

resistive layer for all the segments will be of uniform thickness, and

nominally be characterized by a uniform number of ohms per square. Each

segment, however, must have a different total resistance. Further, since

the RC products for each segment are equal, it follows that the lengths

of each segment must be the same:

R= foL/W (1)

C = Cow (2)

RC = RO  (3)

The total resistance of each segment may only be controlled independently

by changing the width of each segment. If the length of each segment is

governed by the overall network size, and the maximum Wi of the ith segment

is chosen to be much less than L, then the Wi corresponding to the smallest

Ri is the maximum Wi required. The value of Ro for all segments is deter-

mined from

Ro= &m'A/L (4)
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Having made this calculation, the minimum segment width may be calculated

from

/min R (5)

For thin film networks built in keeping with the current state of the

art, R0 should be kept below 5000 ohms per square, and Wmin should be

greater than 5 mile. If these requirements are not met concurrently,

the length L of each segment will have to be increased. Resistive mate-

rials of nichrcme and various oxides fall into the above ranges. Dielec-

trics such as aluminnm dioxide or silicon monoxide may be used to obtain

the proper capacitance. The total capacitance of each segment is obtained

from

Ci = (RC) (6)
Ri

6.2 The Design of Low Pass Filters: Preliminary Considerations

In Chapter Three, the exponential polynomial factors necessary

to construct an WC network function were considered, and their magnitudes

(in db.) were plotted as a function of logio c. Prior to designing low

pass filters it is profitable to investigate these polynomial factors

further to determine where the maximum rate of change of slope for each

of the terms occurs. This information is necessary in designing low

pass filters to have the sharpest cutoff characteristics possible for a

given number of cascaded segments.

The polynomial terms and the derivatives of their magnitudes are

given in Eqs. (7) through (11), and are graphically represented for rapid
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interpretation in Fig. 6-3 and 6-4. Factors with large derivatives at

low fLequencies will be useful in sharp-cutoff low pass filter design.

These functions, which are extracted from Eq. (6) of Chapter 5, and the

derivatives of their magnitudes are:

ti(s) =li' a

Iti(Jw) I = Ia-) I a (

d If'(j0)I = 10 db/decade
d logi 0caP

qa/-

Wa(s) = e

jf2(J) I = e 2 (8)

d If(j )Idb q/D db

d logio a 2  /2 decade

f 3 (s) = ea' + 1

IN(No) I = Ie / '/T + 11 (9)

d If3(J)ldb 10 l/ e (e -sin WE+cos / )

d logjo =2 2 1 ee/ r + i12
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f.(s) = e"' - 1

1f4(Jw) I I lIe ' - 11 (10)

d l40C) db 0 Zo e&/V (es,/'-2T + sin a/cq7 - ,:os WW2
d lI(J2)Idb _

fs (S) = e2 s"- + Bje e rs + 1

I fs(jw)I = je P- JO + Bje / '3 "o+ 1 -

d I f, (Ja) Idb c C /M + Bcos W72 +

d loglo =j2  y21)

(r ea (cosa - sinaM) + Bi//2 ew  (cos - - sin I-2))

+ e"Msin a/M + Bje"' sin Wc2

e/ (sin aw + cos a/M) + Bil esZ (sin al + cosat-W))}

(11)

Certain important features are to be noted in Figs. 6-3 and 6-4. In par-

ticular, the most rapid changes in slope occur in the second order poly-

nomials for which Bi approaches -2. For a filter design with sharp cutoff

these polynomials should be placed only in the denominator of the filter

transfer function; it will be necessary to verify that the function meets
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the realizability conditions developed in Chapters Four and Five. Moreover,

at the frequency corresponding to the rapid change in slope of the second

order polynomials, the functions of Fig. 6-3 are only slowly changing in

magnitudes. Thus the second order polynomials may be expected to dominate

the frequency characteristics in the band of interest. The plots are fre-

quency normalized, and the break-frequency region may be adjusted by

changing the value of a = 2(RC)A.

6.3 The Desln of Low Pass Filters

If a low pass filter characteristic is required to have the

sharpest cutoff practically possible for a given number of segments with

a monotonically decreasing function, its transfer admittance will lack

any second order polynomial factors in the numerator (n=O). In accordance

with the realizability conditions stated in Chapter Five, the low pass

filter will be of the form

-Y (S) y (e + )-q+l q (12)m

(e -1) i (e + Ake + l)
k=l

where q is equal to the number of cascade segments, and no stubs are re-

quired. To obtain further quantitative insight, the first eight low pass

filters may be listed, with all combinations of q and m, in accordance

with Eq. (12).
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Number of Sections a 2m -+l A A, A

1 1 0 0 .. .. ..
2 2 0 -1 -- . .
3 3 1 0 - --.. .
4 4 1 -1 -2 .. ..
5 5 2 0 - -1.9 --
6 6 2 -1 4 -1.9 --
7 7 3 0 -O -1.9 -1.85
8 8 3 -i -2 -1.9 -1.85

In the above table, blanks indicate that the terms do not occur. The

Ai were chosen as close to -2 as practically possible, realizing that

another set of such second order polynomials must be specified which will

alternate with these, and will appear in the numerator of the y 11 (s)

function. Choosing the numbers Ai as above usually requires that calcu-

lations in the S plane be carried out to at least five places, since

subtraction of almost equal quantities becomes likely with the applica-

tion of Richard's Theorem.

If the open circuit voltage gain Av rather than the transfer

admittance is the quantity of interest in the filter design, it may be

obtained from

Av = -Y2i/Y22 (13)

Magnitude-normlized ya terms for several values of q are given in (14).

q = 1 ya = s-(eare +1) (a)
e - 1 (14)

q = 2 y a= (e W 1 + Blea/i +1) (b)(e / i + 1) (ea/ e 1
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2 e2a / -+ re' + 1)
re a 1 (c)

(e + 1)(e -1)(e +Ae +l)

4 (14)

,/i n (e-' / s + Biears + 1)
q 8 Y22 1 (d)

(eav' + 1)(ea/" - 1) n(e ' k/ + Aiea/'8 + i)
1

For the low pass filter,

m = q/2 - 1, (q even) (16)
m = (q-l)/2, (q odd)

2m - q + 1 - -1, (q even) (17)
- q+l =0, (qodd)

Taking the case when q is even, a general expression may be written for

the open circuit voltage gain, in terms of s and q:

eq/2 a//i

n (e a'B + De a /i + 1)
1

The sharpness with which the frequency characteristic of Av may break

initially depends primarily on the number of Bi terms which may be

clustered about Bi = -2. If the original Ai terms of y2l are chosen for

values of Ai which are close together (but which can not be identical),

the values of Bi must alternate with those of Ai according to Theorem VI

in Chapter Four. Thus the values of Bi will be very close to those of

Ai.
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Plots 'of one, four and eight segment low pass filter character-

istics appear in Fig. 6-5, where they are compared with Thcpson (Bessel)

and Butterworth filters which have been normalized so that they possess

the same 3 db points. It is to be noted from this figure, and (18) that

JAyj of the q segment 196 filter decreases without bound as q approaches

infinity. The characteristic, however, can never reach that of the ideal

filter, since this would imply an infinity of identical second order ex-

ponential polyncials in (18) which is precluded by Theorem VI.

6.~1.ample of Low Pass Filter Desixn With Sharp Cutoff

A synthesis example of the fourth order, frequency and magnitude

normalized, low pass filter follows. Theoretical and experimental data

are given in Fig. 6-6. The filter was not designed to meet specific re-

quirements, but rather to find how sharp a cutoff might practically be

realized by a four-section B filter. From Eq. (14(c)),
2

r1 n (e~ a/ i + Bjea/ + 1)
y22(s) = 1

(e a/ + 1)(ea/s - 1)(e 2ar + Aie 1 '8 + 1)

Application of the s - S transformations yields

I+ /1l+S _-
yM(S) (40--_ -10(1 )+1

(I(+S 2  + I+SA+
-- 1- 8

S2(2-B1) + (2+32.) )(S2(2-B2) + (2+B))

= 4S ( (2-A 1) S2 + (2+A1 )
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3.13

Choosing

BL - -1.9, Zm -1.8, an A, = -1.85,

.6 (2 + .02565) (82 + .0526)
Ss (S2 + .039) J

Design the E network for

Y(S) - (S + .02565) (S2 + .0526)
S (S2 + .039)

y(1) = 1.0385

Application of Richard's Theorem causes

y2(S) -Y() y(s) - s y(1)
y(1) - S y(s)

.03622 [ +.0359]T I sF + .04o15

y2(1) .036028

ye(S) - y2(1) ye(S) - S Y2(1)

Y2(1) - S y2(S)

1.0053 S2 + .0359 S2

a .06 S 8 + .oHo5 -8
- .056028

1- 1.0053 S2 + .0359
8.87SR + .oom

a=8.87S 2 s+'° .0352



U4

Y3(l) - 9.180

Y3(S)

Y4(S) - Y3(l) 73(1

= 9.805 .964e (S2 + .0352) -

1-.9648 (S2 ' .0352)S

Y4(S) -= 32
S

yj,(l) - .321.

In sunmar,

Y, (1) - -a. - 03

yg(1) - -a-. - .036
B~2

ys() T - 9.18
R3

Yj(l) - T - .3231
R4

Fra the above calculations, the space-normalized network con-

figurationi of Fig. 6-7 =w be achieved. Practical difficulties arise in

the fabrication of the above network using Teleft1tos Paper, in that the
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.,321 K
9.18 K
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FIG. 6-7
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segment of width .036 k, which is the narrowest segment, is about 1/250

as ide as the widest segment. If the network were built using masking

and deposition techniques, the narrowest segment could practically be

made a few mile wide, and the width of the widest segment would still be

a practical size. With Teledeltos, 1/32" is a practical lower limit.

As a simple alternative, the narrowest segment was increased in

width by a factor of eight over the design value, and poorer cutoff fre-

quency characteristics were accepted. The results are given in Fig. 6-6,

where they are compared with expected results.

6.5 Conclusions

This chapter has concerned itself with the actual details of

construction of RO networks. A low pass filter design problem was employed

as the vehicle to illustrate the difficulties of such construction, and

to indicate the constraints placed on the physical network realization by

the original assumptions in the mathematical models, as well as the de-

sign values which are obtained from the synthesis technique. The Teledeltos

models used for experimental verification have been illustrated, and were

used for all experimental results in earlier chapters.
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CHAPTE SEv

CONCLUSIONS

The synthesis procedures presented herein are the first simple

mathematical techniques applicable to distributed RC networks. The methods

introduced here differ significantly from those presently available in

that they do not require recourse to a digital computer for their appli-

cation. Moreover, because the actual synthesis employs an auxiliary

ccaiplex plane, the calculations may be accomplished with pencil and pad.

The synthesis techniques find immediate application in the field of micro-

electronics.

A contribution to the distributed RC characterization problem has

been developed with the introduction of the 'exponential po2ynomial'

approximation of frequency-magnitude characteristics. As was shown in

Chapter Two, R networks are described, not by rational functions in the

815complex frequency variable s, but rather by rational functions in e

This property has been exploited by approximating the RC driving point

and transfer izmittance functions by ratios of polynomial factors which

are rational in ee ' and which possess well-behaved magnitudes for vaues

of a = jo. It is to be emphasized that once the characterization of an

imittance by appropriate exponential polynomials is accomplished, the

synthesis of the corresponding network function by the methods herein is

exact.

The accomplishment of the exact synthesis, which is particularly

notable, results from the introduction of the S - s transformations,
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where ewr - - . The transformation reduces the synthesis problems1-S
associated with the use of URC networks to those of lumped, lossless net-

works. Because of the hyperbolic nature of the distributed network func-

tions, it is no longer practical to think in terms of pole-zero plots,

since each BC segment contributes an infinity of denumerable poles and

zeros, all of which are intimately related.

It has been demonstrated that a practical realization for BC

networks is a cascade configuration. Such a network is particularly at-

tractive from the fabrication viewpoint, since it minimizes interconnec-

tions, network area, and the total number of fabrication properties.

Accordingly, Richard's Theorem was applied to develop synthesis techniques

which permit the realization of a very wide class of impedances having

monotonically decreasing magnitude. Experimental results have confirmed

the validity of the theory.

By extending the application of Richard's Theorem, methods have

been determined to realize a wide class of transfer imittance and gain

functions. Practical network configurations have been suggested, which

generally take the form of cascaded RC segments using stub (shunt) branches

to realize the numerator functions of the transfer terms. Without the

stubs, only zeros at infinity are realizable. A specific extraction

cycle to determine the stub values and locations, as well as realizability

conditions have been given. The theoretical development has been applied

to the synthesis of a network to meet specified requirements. Subsequent

measurements agree well with those predicted theoretically.
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APPMIX I: Proofs of New Theorems in Text

Theorem II: If ZRC(s) is the driving point impedance of a URC network

composed of segments with RC = (a/2)2, then ZLC(Sj) = ,T ZRC(s) with

= tanh(efs/2) is the driving point impedance of a lumped LC network.

Proof: If ZRC(s) is the driving point impedance of any RC network,

NsZ(s) will be an LC function in the 4a plane.21,22 Moreover, a posi-

tive real transformation for which Rels= 0 - Re S = 0 (i.e., S (,r)) of an

LC function is again an LC function, so that Z(S 1 ) is in fact LC. To

show that it is lumped and LC, consider the two possibilities in Fig.

2-2 (b) and (c). The URfC and URCO driving point impedances become

;47RIc and (1/ )IR/C respectively, which are indeed lumped impedances

in the S plane.

Theorem III: If ZRC(S) is the driving point impedance of a URC network

composed of segments with RC = (a/2)0, ZLC(S,) ='s ZRC(5) with

82 = coth (aWs/2) is a lumped LC driving point impedance in the Sa plane.

Proof: Since S2(fs) is positive real with Refs = 0 - Re S = 0, the proof

follows as above to show that Z(S.) is LC. To show that Z(8 2 ) is lumped,

apply S. to the two networks of Fig. 2-2 (b) and (c). The resulting

impedances are (l/S, >1i7/ and S2 Ii7Wrespectively.

Theorem IV: Z(O') may be realized as the driving point impedance of a

finite number of elemental U-S and U-CO networks using (4- 7 ) (and simi-

l.arly (4i-8)) if and only if
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a) Z(s) may be expressed as

1 4 2k i tanh aj--

Z(-) . k nh + - + 2
To stanh i I. [2 STS + Ci]2 2

b) where ko, ko, and ki > 0

Proof: Z(s), under (4-7) (and similarly, under (4-8)), is transformed

to
n

Z(S) = ko s + --o -+ 2kiS

which is an LC driving point impedance if ko, ko, and ki > 0.

Theorem V: Z(s) may be realized as the driving point impedance by a finite

number of elemental UR(S and URCO networks of constant RC product using

(4-7) or (4-8) if and only if

a) '-f Z(s) is a rational real function of ew, a real and positive.

b) Re (rs Z(,)) = 0 for To j q real

or s -c? q real

c) Re (Is Z(s)) > 0, &-o > 0

Proof: Z(S), using either (4-7) or (4-8), must be a reactance function

in S. Hence, since either (4-7) or (4-8) are positive real, (a), (b),

and (c) follow as necessary conditions. Re Z(jw) - 0 as w - co, since

the tM shunt capacitance has zero impedance as w - co. The sufficiency

of (a) - (c) is shown by noting that, under (4-7) and (4-8), s Z(s)



must be transformed into an LC function in t.e S plane, of the form of

Theorem IV.

Theorem VI: Z(s) may be realized as a URC network under (2-7) if and

only if Ys z(s) my be expressed as

(e 8 + , ( M n ) +l  n(e2 + Bkes + 1)
4-0 Z(S) Ce -)): ... .-)  (e +Ake +l)

or its inverse, vhereAk > Bk, Ak < Z, !Bkj < Z, and .=n or n- .

Proof Case 1:

(ew + 1) n e~w + Bkem + 1
e2w. + Akea l s + 1

22 +k 2 +B

Z(s) R

Sz 2 -Ak ' +_2

2-Ak

1 n(2 -k 82 +P Do

1 2 - Ak J

For Z(S) to be 1.C in the S plane, pole zero alternation demands that

Ak > Bk~. Since D? and Cj?2 are positive and real, iAkI < 2 and I B <2.
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Case 2:.....22: 1 Bk+ +2:)

%r z(,) 1
(eW'1)(e. l ~) n- (e2-W ASBl

1

S n ( e- +) + Bk

1. 2 - kn- 1l 2 + Ak4s n (2 - Ak) S+

1 2- Ak

Again, for Z(S) to be LC, Ak > Bk, JA < , BkI < 2.

Theorem XI: Using a cascade and stub WC network, yig(s) may be realized

together with yl 1 (s) within a constant if

a) Yll(s) fulfills the conditions of Theorem VI and possesses the
same Ai polynomials as y12(8)

b) -ya(s) may be expressed as

,Irs eq /2 n e e. Jsfe +Bj +1

Y12(s) = 1

CIS We 2(n-m)+q-l In 2Ws WS
e -1 (e +1) l (e + Aje + 1)

1

where (1) IBiI, IAi! < 2, Ai+l > Ai, R,+ 1 > Bi.

(2) % > Am, i = 1,2,3, .. n.

(3) k > Cn, where Cn is the largest Cj of the numerator
polynomial factors of yi

(4) mn > n + (q/2) - .

(5) q/2 > n.

Proof: Under the transformation e S = +S , the following hold:1-3
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e qas/2 1+ 8 q/2 e -" 1 = , e s  + 1
1- ) ' eas + 1

and

e -+ A e s + 1 B(2 -Ai) + (2 + Ai )

(1 -S

Then (b) above becomes

1 +s 8 q/2 n S(2 - Bi) +(2+ Bi)
-z- s n ( )y(8) _____(_-_s

Y21 =88m 8(2 Ai) + (2 + Ai) (2)2(n-m)+q-1

1 (i - S)2 (1 - S)2(n-m)+q

n

(1+ S)q/2 (1- s)q/2 n1SP(2 - Bi) + (2 + Bi)
1

m
8 HlS2(2 - Ai) + (2 + Ai)

1

1 q /2

2111 (S2 +

1

This expression satisfies the conditions of Corollary III if (a) thru

(c) of Corollary III are met; i.e.,

1) is a statement of the fact that all transmission poles, and
transmission zeros not at S = 1i, lie on the imaginary axis
of the S plane.

2) is a direct consequence of (b)

3) is a direct consequence of (c)
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AFPPDIX II: Derivation of the Basic Field Equations for the URC Segment

Consider the structure of Fig. A-2-1. Let V(x~y,t) be the po-

tential between the resistive layer and the conductor. Assume an ideal

conductor, and a lossless dielectric of negligible thickness. Then the

surface current density and potential are given by

aV

v = -c - (A2-1)

V V = -R- (A2-2)

where R is the resistance per square, and C is the capacitance per unit

area. Then (1) and (2) imply

aV
VS V = V.V V = RC --- (A-3)

The general solution for es t excitation is

V(x,y,tl - (Ae " x x + Be x x ) (Ce - y  + Deyyy)est (A2-4)

y!y 29= RC (A2-i4a)x y

A A
Similarly the current components are (for Js - Jxax + Jyay)

at YX YYXs
Jxe = R (Ce-YY + DeYY) (Ae-yxx - Be YX)eat (A2-5)R

and

Jyes t = YY (Ae " x x + Be Yx x ) (Ce- Yy - De+YYY)e s t (A2-6)R



130

CONDUCTING
ELECTRODE

FIG. A 2-/I

URC SEGMENT



131

The solution of these equations may be made from the conditions. For

the uniform rectangular URC section, such that 0 < x < L and

0 < y < W, with a conducting strip across the edges where the voltage

is applied, the boundary conditions are

V = Ve s t for x = 0 and V = Vae s t for x = L (A2-7)

Jy = 0 for y = 0 or y =W. (A2-8)

Under these boundary condItions (4) leads to

V, = V(O,y) = (A + B) (Ce- yy + DYyY) (A2-9)

and clearly yy = 0 since V1 is independent of y.

Thus yX =ISRC from (4a).

Hence (4) and (T ) may be combined to

V2 = (Ae-YXL + BeyxL)M when M = C + D (A2-10)

and
Yx

Jx = L (M) (AeYxX - BeYxx )  (A2-11)

since M 0

Yx 0

and Jyj 0 since y= 0. (A2-12)

In summary, then, V(x) and Jx(x) are functions of x only, and

Sy(X) - 0.
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V, = (A+B)M (A2-13)

Vs3 = (Ae-YXL + BeYxL)M (A2-14.)

or, letting a = MA, =MB

V, = a + p (A2-15)

V, = e-YxL + 1 y x L  (A2-16)

Thua

V2  (VI-0) e'YXL + fe xL (A2-17)

O(eYxL - -YxL) = Va - V e- Yx L  (A2-18)

V9 V, e - Y x L

- v 1 eYX ~(A2-19)
2 Binh yxL

VI. eYxL - V2
a = ,(A2-20)

2 sinh YXL

Therefore (A2-21)

<. , eYx- V2'+ v - V, e-YX tV(x,y,t) -xe
2aiflh Y.L 2 Binh YXL

at,, YX V _ , eyxL- V2 -"Y. v- , A -Y a
- ) V)(e x) - eYxxj e t

R L~ 2 Binh y L 2 ainh yru

(Az-22)

-here =

j 7 = (A2-2,3)
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The Y said thus the Z parameters (Eqns. 1-5 and 1-6) are rapidly derived from

(A2-22). If a load termination, ZL, provides the terminal condition at

x = L, alternate forms of (A2-21) and (A2-22) are

I(xs) Y (zL ZL+ 2 ) eyx(I-x) - (ZL - 2 L e-Yx( L 'X) (A2-2)

t YC '\ + Ae~L 7-2-Y e)X(7- + 'x.) eyx(,'x) +Y Yz e-YxLx
V(x' B) = V, (a)B -- ;)(A-5

(z-L +4) YXL +(z - eYxL

Higher order modes might be possible solutions if a finite seg-

ment dielectric thickness were considered in the previous analysis. The

URC segment may be considered as a waveguide with one highly lossy wall

(the resistive sheet), a lossless dielectric of thickness "a", and one

lossless wall. A thorough library search has failed to uncover any

analysis of such a structure from the waveguide point of view, except

where the lossy wall is characterized by very small loss. In this case,

perturbation techniques have been employed to compute the power dissi-

pated in the lossy wall, assuming a small variation of the TE or TM mode.

In such a case, the cutoff frequency is assuied to be that of the loss-

less case. For the dimensions of practical 195 segments used in this

synthesis technique, the dielectric thickness is of the order of 10- 2 cm,

and the corresponding cutoff frequency for the TE10 mode of the lossless

case would be of the order of several kilomgacycles, far above our

intended operating frequency. Experimental data confirms the use of the

two-port parameters derived in Chapter 1, up to hundreds of kilocycles.
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